
Abstracts

Personalisierte Ernährung und Einteilung/ Klassifizierung von me-
tabolischen Typen basierend auf genetischen, epigenetischen und 
mikrobiologischen Analysen 

Personalized nutrition and classification of metabolic types based 
on genetics, epigenetics and gut microbiota

Humans vary in their need and response to diet. Genetic dis-
positions, such as single nucleotide polymorphisms (SNPs) are 
frequently used for clustering consumers in metabolic types 
(metabotypes), according to individual characteristics of energy 
extraction from food or risk for metabolic diseases. Results are 
then used for individualized concepts for weight management 
or weight loss. However, SNPs explain only a minor part of me-
tabolic variability whereas epigenetic regulation of metabolic 
enzymes, GI microbiota and lifestyle are of ample importance. 
In a pilot study enrolling 37participants under nutritional advice 
we analyzed results from a panel of SNPs, epigenetic markers 
and microbiota as well as food frequency questionnaires. The 
results of this study clearly indicate that epigenetic and micro-
biota markers need to be integrated in the definition of me-
tabotypes. Such improved metabotypes may then enable an 
improved guidance for a personalized nutrition. 
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Menschen unterscheiden sich in ihren Ernährungsbedürfnissen 
und  deren Stoffwechsel. Genetische Veranlagungen, wie zum 
Beispiel Einzelnukleotidpolymophismen (engl. Single nucleotide 
polymorphisms SNPs) werden häufig verwendet um Patienten 
in verschiedene metabolische Typen (metabotypes) einzuteilen, 
passierend an den individuellen Eigenschaften wie zum Beispiel 
Energieextraktion aus verschiedenen Nahrungsmitteln oder das 
genetische Risiko für metabolische Erkrankungen. Diese Eintei-
lungen können weites für ein individuelles Konzept für Gewichts-
management und Gewichtsverlust verwendet werden. Nichts-
destotrotz können SNPs nur einen kleinen Teil der metabolischen 
Variabilität  erklären, weshalb epigenetische Regulation von En-
zymen, die gastrointestinale Mikrobiota und der Lebensstil von 
selber Bedeutung sind.  In einer Pilotenstudie mit 37 Teilnehmern 
und Ernährungsberatung wurden SNPs, epigenetische Marker, 
gastrointestinale Mikrobiota sowie Ernährungsfragebogen analy-
siert. Die Ergebnisse der Studie zeigen deutlich, dass epigenetische 
Marker als auch Mikrobiota zu den Analysen der Metabotypes 
integriert werden sollte. Diese verbesserten Metabotypes könnten 
eine bessere personalisierte Ernährungsberatung ermöglichen.
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INTRODUCTION
Dietary preferences and habits are controlled by socioeco-
nomic, psychological, behavioral and in particular biological 
determinants such as hunger, satiety and sensory aspects (5). 
Body weight and composition, as well as metabolic rate are 
affected by nutrient intake and biochemical pathways regula-
ting nutrient absorption, distribution, metabolism, excretions 
and other cellular energy processes (4).  Genetic and epigenetic 
mechanisms act as key regulators and predispositions may even 
forecast the response to a weight loss intervention (3,23). The 
field nutrigenetics offers a new opportunity to evaluate the role 
of genes, which determine metabolism, disorders and further 
use the predisposition of genes for a personalized nutrition. Ge-
nome wide association studies (GWAS) indicate that particular 
gene polymorphisms such as single nucleotide polymorphisms 
(SNPs), the most common type of genetic variation, are related 
to obesity. SNPs within fat mass and obesity associated genes 
(FTO) were shown to increase the Body Mass Index (BMI) by 
0.4kg/m²/allele, caused by an increased intake of fat (2, 11). For 
example, variants in Melanocortin 4 receptor (MC4R), a gene 
activating stress neuropeptides, can be linked with lifestyle, 
food intake and eating habits and as well stress. Carriers of 
the risk allele have a significant higher intake of processed food 
and fruits according to recent studies (12). Transcription factor 
7-like 2 (TCF7L2) is a key regulator of glucose homeostasis and 
has been most consistently associated with Diabetes Mellitus 2 
(DM2).SNP rs7903146 has been reported to have the highest 
effect on development of DM2 (11).

The gene Peroxisome proliferator-activated receptor gamma 
(PPARG) encodes a regulator of adipocyte differentiation. 
Galbete et al. showed that subjects consuming a high amount 
of carbohydrates and carrying the risk allele had an increa-
sed obesity risk (13,14). Fatty acid desaturases (FADS) are 
enzymes involved in the metabolism of polyunsaturated fatty 
acids (PUFAs). It has been reported that individuals with a 
polymorphism in rs174547 within the FADS1 gene have in-
creased triglyceride (TG) levels, decreased high density lipo-
proteins (HDL), cholesterol and an increased coronary artery 
disease risk (10). Leptin is an adipocyte-secreted hormone 
and regulates energy homeostasis, blood pressure and food 
intake. Polymorphisms at the leptin receptor (LEPR) decrease 
the beneficial effects of leptin, like reducing appetite and 
food intake, and moreover lead to an increased energy me-
tabolism (19). Angiotensin-converting enzyme (ACE) gene 
variants are associated with endurance performance, like 
swimming, cycling and running, based on lower ACE activi-
ty and increased bradykinin. This mutation results in more 
oxygenated blood delivered to the working muscles (8). The 
SNP transcription factor AP-2ß (TFAP2B) rs987237 has a 
significant association with waist to hip ratio (3). Martinez 
et al. showed a higher weight loss in wildtypes with a low 
fat and low caloric diet (20,21).

Epigenetics. The main epigenetic mechanisms are DNA 
methylation, histone modifications and non coding RNAs 
(3). DNA methylations occur mainly in cytosines followed 
by guanines (CpGs) by the addition of methyl groups to 
the pyrimidine ring in position 5 of cytosine (1). Influenced 
by internal and external factors such as diet, lifestyle and 
environment, DNA methylations at CpGs are specific and 
vary over time within an individual and further may act 
transgenerational (1,3,22). CpG methylation can change the 
activity of a gene and therefore is able to repress or promote 

its expression.  Epigenetic markers such as DNA methylation 
of specific CPGs are used as predictors for metabolic risks 
and predictors for the success of a diet related treatment, 
like weight loss or weight maintenance (7). For instance, an 
elevated Interleukin 6 (IL6) release in blood is linked with 
a decreased gene promoter methylation. High IL6 blood 
levels are associated with several inflammatory diseases (8). 
Moreover, studies showed a higher IL6 methylation in obese 
individuals. Aumueller et al. reported that low IL6 methyla-
tion is associated with a better weight loss (25). 

Another promising epigenetic marker associated with meta-
bolism constitutes the long interspersed element 1 (LINE1). 
LINE1 is a retrotransposon, which is widely expressed in the 
human genome (3) and is associated with genetic instability 
and chromosomal abnormalities (22). Usually assessed to 
estimate global DNA methylation, LINE1 methylation is rela-
ted to BMI, DM2, insulin resistance, cardiovascular disease, 
inflammatory response and cancer (3,9) as well as obesity 
and metabolic syndrome (MetS).

Microbiota. The microorganisms in the gut are a highly me-
tabolic active community and are regarded as a regulator 
of its host homeostasis. The gut microbiota contains 100 
times more genes than human cells. The composition of 
the microbiota varies over lifetime with diet as strongest 
impact factor (15). Indigestible complex carbohydrates are 
a major source for carbon, the main substrate for the gut 
microbiota. After their fermentation short chain fatty acids 
(SFAs), like acetate, propionate and butyrate are produced 
and absorbed via the colon mucosa. SFAs show multiple 
health promoting activities and have beneficial effects in 
appetite regulation, lipid and glucose metabolism (15,16). 
However, an imbalanced gut microbiota affects metabolites 
like butyrate and lipopolysaccharides (LPS), which interfe-
re with the host’s epigenetic mechanism and may trigger 
pro-inflammatory processes (24,29). GI microbiota have 
been grouped in enterotypes according to main bacterial 
groups with relevance for metabolic characteristics and di-
scussed critically (30-32) .

OBJECTIVES
The Metabotype-Study was initiated to evaluate a clustering 
of participants into four different metabotypes based on 
differences in genetics as well as epigenetics and GI – micro-
biota. Analysis of cluster of SNPs as described scientifically 
and already used commercially should be complemented with 
analysis of epigenetic CpG methylation of metabolic relevant 
genes and analysis of gut microbiota composition.  The hypo-
thesis that a solely SNP based categorisation of metabotypes 
misses important aspects was supported by the outcome of 
a comparison of a SNPs analysis and an integrated analysis 
of SNPs including epigenetic and microbiota marker.

METHODS
The study population included 37 healthy men and women 
from 30 to 60 years of age. Exclusion criteria were chronic 
diseases, colitis ulcerosa, supplementation of pre- or pro-
biotics, antibiotic intake and BMI over 30. Blood spots were 
used for sample collection of capillary blood. DNA extraction 
was conducted with the QIAamp DNA Mini Kit (Qiagen, 
Hilden, Germany). SNP analysis was performed with the 
StepOne Plus (Thermo Fisher, Massachusetts, USA) using 
TaqMan Mastermix and TaqMan SNP Genotyping Assays 
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Figure 1 shows the contribution of the different metabotypes 
using SNP analysis. 
In total we found 23 balanced types, 7 glyco, 2 protein and 
5 fat types. In figure 2 the distribution of different sport 
types and physical activity in our study population is shown. 
Figure 3 shows the connection between IL-6-methylation 
and the amount of Cluster IV. The higher the methylation 
of IL-6, the higher the amount of Cluster IV bacteria. Figure 
4 shows the correlation between the different forms of the 
TCF7L2-SNP and the amount of Bacteriodetes. The wild type 
shows the highest quantity of Bacteriodetes.

Figure 1: Different Metabotypes

Figure 2: Sport types and physical activity

Figure 3: IL6 Methylation and Cluster IV

Figure 4: TCF7L2 and Bacteroidetes

from Thermo Fisher (Massachusetts, USA). For epigenetic 
analyses DNA was bisulfite converted, using the EpiTec bi-
sulfite kit (Qiagen, Hilden, Germany). High resolution mel-
ting curve analysis was conducted to assess LINE1 and IL6 
methylation. For quantification analysis of microbiota re-
al-time polymerase chain reaction (PCR) was applied using 
TaqMan qPCR and SYBER Green qPCR in a Rotorgene 3000 
after DNA extraction of stool samples using QIAamp Fast 
DNA Mini Stool Kit.

Metabolic types. For our study we chose 12 SNPs in to-
tal. MC4R rs17782313, TCF7L2 rs7903146, IL6 rs1800795, 
SLC6A14 rs2011198, FTO rs9939609, PPARG2 rs1801282 
have been associated either with BMI and obesity or DM2 
(2). Moreover MC4R rs17782313 and LEPR rs9436740 are 
linked with satiety, IL6 rs1800795 with weight regain and 
SLC6A14 rs2011198 with eating disorder development. 
Others like TFAP2B rs987237, FADS1 rs174547, and ADRB3 
rs4994 as well as FTO rs993609 and TCF7L2 rs7903146 are 
reported to correlate to different metabolic types. The ACE 
gene is associated with different sport types (19,26). For 
the classification of the different metabotypes we focused 
solely towards SNPs linked with nutrition and metabolism 
(18). As already described by Martinez et al. we gave points 
from zero to two for each SNP (2). 

RESULTS
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DISCUSSION
Our main findings identify an association between genetics, 
epigenetics and gut microbiota variations. Considering the 
outcome for the strength sport type, individuals in this group 
have a higher amount of Firmicutes in general as well as 
Cluster IV and a higher methylation of IL6. A high abundance 
of Cluster IV or Firmicutes which is mostly seen in humans 
with high BMI (27) is therefore suggested to result in a low 
weight loss. Latter was previously reported to be correlated 
with a high methylation of IL6. Further, Firmicutes and Clus-
ter IV are associated with increased inflammatory and stress 
levels as reported in FFQ. Remely et al. showed that Cluster 
IV and Cluster XIVa decreased in people with DM2 after 
weight loss suggesting that people with higher BMI exhibit 
a higher distribution of these bacterial groups. Our results 
could additionally demonstrate this outcome with Cluster IV 
(27,28). Furthermore, we observed that the wildtype forms 
of TCF7L2 and LEPR were correlated to higher amounts of 
Bacteroidetes, which were shown to be higher abundant in 
lean individuals. Both SNPs can be associated with obesity as 
well as diabetes: Carrying no risk allele portends persons are 
more likely lean, thus have a lower risk for obesity and DM2. 
This could be underlined by showing that a high amount of 
Bacteroidetes tends to correlate with a low risk for obesity, 
which has also been reported by previous studies (17). LINE1 
is considered to be highly methylated in participants with 
high BMI (33), which also emerges in our study. Moreover 
we observed a possible interaction of LINE1 methylation with 
PPARG2, where heterozygotes were higher methylated, and 
consequently had a higher BMI. Controversially, the wildtype 
for PPARG2 showed a positive correlation with methylation 
of IL6, which could indicate that wildtype carriers have a less 
efficiency to lose weight but a lower risk to develop DM2.
This study demonstrates that interactions between genetic as 
well as epigenetic variations, the gut microbial composition 
and their influences through diet and lifestyle but also phy-
sical activity are relevant for genotype based interventions 
bearing an enormous potential in developing personalized 
diets based on the genotype (20).

Humans differ in height, weight, activity, cognition, strength, 
endurance and their preference for food, due to a wide range 
of biological variables. These variables include allelic poly-
morphisms and changes in the epigenomic and also metabo-
lomic landscape due to environmental influences (6). DNA 
methylation changes are directly correlated to dietary inter-
ventions, weight loss and regain and further are associated 
with the development of diseases e.g. metabolic disorders 
(3). With increasing knowledge of gene-diet interactions 
for macro-and micronutrients it will be possible to give re-
commendations based on the (epi) genetic make-up (11,23).

CONCLUSION
Metabolic diseases are a central burden for public health 
and heath care. There is increasing evidence that genetic, 
epigenetic and microbiota aspects contribute to individual 
mechanisms, which result in individual pathways for metabo-
lism and energy extraction from food. Genetic dispositions, 
such as SNPs are under scientific investigation but already in 
commercial use for defining metabolic types (metabotypes). 
These metabotypes define the risk for metabolic diseases, 
preferences for energy extraction from food and individuali-
zed concepts for weight management or weight loss. To our 
knowledge there is no other study focusing on SNPs and their 

classification into metabotypes. Furthermore, other nutritional 
recommendations based on genetic disposition do not consider 
environmental and nutritional effects on gene regulation. Results 
show that SNPs can be clearly attributed to metabotypes. Analysis 
of DNA methylation strengthens the outcome. Furthermore gut 
microbiota composition shows significant correlation with SNP 
and methylation according to metabotype clustering.
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